OEF 几何积分 --- 介绍 ---

本模块目前包含 19 个关于单变量函数积分几何应用的练习: 面积, 重心, 弧长等.

还有其它关于定积分的模块: OEF 定积分OEF 物理积分.


显式方程的弧长 2D

计算曲线 位于 和 之间的长度.

xrange , yrange , arrow ,0,,0,10,grey arrow 0,,0,,10,grey plot skyblue, trange , linewidth 3 plot blue,

你的回答的精度应达到小数点后 4 位.


参数方程的弧长 2D

计算以下参数曲线

,

在 与 之间的弧长.

xrange , yrange , trange , arrow ,0,,0,10,grey arrow 0,,0,,10,grey plot skyblue,, trange , linewidth 3 plot blue,,

你的回答的精度应达到小数点后 4 位.


相交三次曲线的面积

计算以下蓝色区域的面积, 其中红色曲线的函数是 f(x) = .

你的回答的精度应达到 5 位数字.


圆弧距离

点 以常速沿半径为 的圆周运动, 而另一点 则是处于与圆心相距 的固定位置. 计算这两个点的平均距离.

你的回答的精度应达到小数点后 4 位.


三次曲线面积

计算以下阴影区域的面积, 其中 C 是函数 f(x) = 3- 的曲线, LC 的水平切线.

计算结果的精度至少 5 位数字.


日食面积

有一个日偏食, 其中月球的阴影半径等于太阳的平径. 而太阳月亮的中心距离是太阳半径的 倍. 计算太阳圆面被月球遮挡部分所占的百分比.

计算精度要求达到 0.1% 或更高.


闭的极坐标长度

极坐标方程 定义了一条曲线, 其中 是极角. 计算此曲线 被标记部分 的长度.

xrange -, yrange -, fill 0,0,white tstep 500 trange , arrow 0,0,,0,12,grey disk 0,0,6,red plot skyblue,()*cos(t),()*sin(t) trange , linewidth 2 plot blue,()*cos(t),()*sin(t)

开的极坐标长度

极坐标方程 定义了一条曲线, 其中 是极角. 计算此曲线 的 从 到 的长度.

xrange -, yrange -, fill 0,0,white tstep 500 trange , arrow 0,0,,0,12,grey disk 0,0,6,red plot skyblue,()*cos(t),()*sin(t) trange , linewidth 2 plot blue,()*cos(t),()*sin(t)

螺线极坐标长度

极坐标方程 定义了一条曲线, 其中 是极角. 计算此曲线 的 从 到 的长度.

xrange -, yrange -, fill 0,0,white tstep 500 trange , arrow 0,0,,0,12,grey disk 0,0,6,red plot skyblue,()*cos(t),()*sin(t) trange , linewidth 2 plot blue,()*cos(t),()*sin(t)

已知对数面积

考虑函数 . 下图显示了 f (x) 的曲线. 红色竖线是由方程 x=c 给出的. 已知蓝色区域的面积等于 , 问 c 的值是什么?

xrange , yrange , arrow ,0,,0,10,grey arrow 0,,0,,10,grey text grey,0.95*,0.1*,small,x text grey,0.03*,0.98*,small,y trange 0, plot black,t, vline ,0,red fill 0.8*,0.2*,skyblue

你的回答的精度至少应有 4 位小数.


抛物线重心

计算以下阴影区域的重心 p0=(x0,y0), 其中 C 是函数 f(x) = 定义的曲线.

计算结果的精度至少 5 位数字.


抛物线面积

计算以下阴影区域的面积, 这里 C 是函数 f(x) = 2 的曲线, L 是由方程 += 定义的直线.

计算结果的精度至少 5 位数字.


抛物线面积 II

计算以下阴影区域的面积, 这里 C 是函数 f(x) = 2 的曲线, 两条直线 L1L2 分别由方程 y= 和 y= 确定.

计算结果的精度至少 5 位数字.


抛物线与圆围成的面积

计算以下阴影区域的面积, 这里 C 是中心在原点半径为 的圆, 而 P 是函数 f(x) =  的曲线.

计算结果的精度至少 5 位数字.


二次曲线围成的面积

计算以下蓝色区域的面积, 其中 C 是函数 f(x) =  的图像, L 是直线 x = .

你的回答至少应有 5 位数字.


已知二次面积 *

考虑函数 . 其曲线如下图所示. 已知黄色区域的面积等于 , 求 c 的值?

xrange , yrange , plot black, arrow ,0,,0,10,grey fill ,*(-1)*0.1,yellow arrow 0,,0,,10,grey text grey,-0.04*,0.07*,small,x text grey,0.03*,-0.01*,small,y

你的回答至少应该精确到2 位小数.


球形蓄水罐

工厂有一个内直径为 米的球形蓄水罐, 通常的水位是距底部 米. 有一天由于系统故障, 水位跌到 米. 问为了恢复到正常水位需要抽多少水进去?

旋转体面积

计算由旋转以下红色曲线所生成的立体的面积:

它的旋转轴是 轴, 从 到 .

xrange , yrange , arrow ,0,,0,10,grey arrow 0,,0,,10,grey text black,-0.04*(),0.08*(),small,x text black,0.03*(),-0.02*(),small,y dline ,0,,,black dline ,0,,,black trange , plot red, v=0.3 u=0.8 r=-0.12*() m=0.03* n=0.07* trange v,2*pi-v plot black,m*cos(t)+r,n*sin(t) arrow m*cos(u)+r,n*sin(u),m*cos(v)+r,n*sin(v),8,black

旋转体体积

计算以下红色曲线生成的旋转体体积

其旋转轴是 轴, 从 到 .

xrange , yrange , arrow ,0,,0,10,grey arrow 0,,0,,10,grey text black,-0.04*(),0.08*(),small,x text black,0.03*(),-0.02*(),small,y dline ,0,,,black dline ,0,,,black trange , plot red, v=0.3 u=0.8 r=-0.12*() m=0.03* n=0.07* trange v,2*pi-v plot black,m*cos(t)+r,n*sin(t) arrow m*cos(u)+r,n*sin(u),m*cos(v)+r,n*sin(v),8,black

别的类似练习: integrals   面积   微积分  


由于 WIMS 不能识别您的浏览器, 本页不能正常显示.

为了进入 WIMS 服务器, 您的浏览器必须支持 forms. 为测试您正在使用的浏览器, 请在此键入 wims: 再按回车.

请注意: WIMS 的网页是交互式的: 它们不是通常的 HTML 文件. 只能在线交互地 使用. 您用自动化程序收集的网页是无用的.

Description: 一组关于单变量函数积分几何应用的练习. This is the main site of WIMS (WWW Interactive Multipurpose Server): interactive exercises, online calculators and plotters, mathematical recreation and games

Keywords: wims, mathematics, mathematical, math, maths, interactive mathematics, interactive math, interactive maths, mathematic, online, calculator, graphing, exercise, exercice, puzzle, calculus, K-12, algebra, math閙atique, interactive, interactive mathematics, interactive mathematical, interactive math, interactive maths, mathematical education, enseignement math閙atique, mathematics teaching, teaching mathematics, algebra, geometry, calculus, function, curve, surface, graphing, virtual class, virtual classes, virtual classroom, virtual classrooms, interactive documents, interactive document, analysis, integral, definite integral, area, volume