OEF 最大公因数 --- 介绍 ---

本模块目前包含 18 个关于整数的极大公因数和极小公倍数的练习.

gcd 与存在性

是否存在两个整数 m, n 满足:

gcd(m,n)=, mn= ?


求 gcd

计算 gcd(,).

求 gcd-3

计算 gcd(,,).

求 gcd II

计算 gcd(,).

gcd 与 lcm

求正整数 n 使得:

gcd(n,)=, lcm(n,)=.

gcd 与 lcm II

求两个不同于 与 的正整数 mn, 使得:

gcd(m,n)=, lcm(m,n)=.

两个整数的次序可以任意.


gcd 与 lcm III

求两个不同于 与 的正整数 mn, 使得:

gcd(m,n)=, lcm(m,n)=.

两个整数的次序可以任意.


gcd, lcm 与乘积

m, n 是两个正整数, 满足

=, =.

等于什么 ?


gcd, lcm 与和

求两个正整数 mn, 使得:

gcd(m,n) = , lcm(m,n) = , m + n = .

这两个数的次序不限.


gcd 与倍数

设 , 是两个非零整数. 使

pgcd(, ) pgcd(,)

的条件是什么 ?


gcd 与乘积

求两个正整数 mn, 使得:

gcd(m,n) = , mn = .

正整数的次序不限.


gcd 与和

求两个正整数 mn, 使得:

gcd(m,n) = , m + n = .

整数的次序不受限制.


gcd, 和与积

求两个正整数 mn, 使得:

gcd(m,n) = , m + n = , mn= .

正整数的次序不限.


求 lcm

计算 lcm(,).

求 lcm-3

计算 lcm(,,).

lcm 与积

求两个正整数 mn, 使得:

lcm(m,n) = , mn = .

这两个数的次序没有限制.


lcm 与和

求两个正整数 mn, 使得:

lcm(m,n) = , m + n = .

这两个数的次序没有限制.


lcm, 和与积

求两个正整数 mn, 使得:

lcm(m,n) = , m + n = , mn= .

这两个数的次序没有限制.


由于 WIMS 不能识别您的浏览器, 本页不能正常显示.

为了进入 WIMS 服务器, 您的浏览器必须支持 forms. 为测试您正在使用的浏览器, 请在此键入 wims: 再按回车.

请注意: WIMS 的网页是交互式的: 它们不是通常的 HTML 文件. 只能在线交互地 使用. 您用自动化程序收集的网页是无用的.

Description: 一组关于整数的 gcd 和 lcm 的练习. This is the main site of WIMS (WWW Interactive Multipurpose Server): interactive exercises, online calculators and plotters, mathematical recreation and games

Keywords: wims, mathematics, mathematical, math, maths, interactive mathematics, interactive math, interactive maths, mathematic, online, calculator, graphing, exercise, exercice, puzzle, calculus, K-12, algebra, math閙atique, interactive, interactive mathematics, interactive mathematical, interactive math, interactive maths, mathematical education, enseignement math閙atique, mathematics teaching, teaching mathematics, algebra, geometry, calculus, function, curve, surface, graphing, virtual class, virtual classes, virtual classroom, virtual classrooms, interactive documents, interactive document, algebra, arithmetic, number theory, prime, factorization, integer, gcd, lcm, bezout